Chem 1046 Lecture Notes Chapter 15

Chemical Kinetics

These Notes are to <u>SUPPLIMENT</u> the Text, They do NOT Replace reading the Text Book Material. Additional material that is in the Text Book will be on your tests! To get the most information, <u>READ THE CHAPTER</u> prior to the Lecture, bring in these lecture notes and make comments on these notes. These notes alone are NOT enough to pass any test!

Note: For my lectures and class (aq) for aqueous is assumed.

Note: The reactions in this chapter go to completion, Ch 16 are reactions at equilibrium

Phenolphthalein is an indicator used in the titration of acid and a base.

 $\rm pH<8$ = colorless (neutral to acidic), $\rm pH>12$ (basic) color is pink

Slide

Chemical Kinetics is the study of Rates of Chemical Reactions

Reaction Mechanism is the detailed pathway taken by atoms and molecules as a reaction proceeds. **15.1 Rates of Reaction** = Change in Concentration / Change in Time = Δ [concentration] / Δ time

 $N2O2 \rightarrow 2 NO2 + \frac{1}{2}O2$

You will notice for this reaction, the rate of reaction changes with time 26-Jun-2012 Page 1 of 12

- **1. Initial Rate** is the rate at Time = 0, (hard to measure), use a Tangent
- **2.** Average Rate of Reaction measure 2 quantities (conc & time), Rate_{avg} = Δ Conc / Δ Time

Rate of loss of N2O5 = - Δ [N2O5] / Δ t

- **Rate_{avg} of loss of N2O5 for time 45 min to 60 min** = (1.10 1.22) mol/L / (55 40) min = 0.0080 mol / L min = **8.0 x 10**⁻³ mol / L min
- **Rate**_{avg} of loss of N2O5 for time 6.5 to 9.0 hrs = -(0.10 0.22) mol/L / (540 390) min = 0.00080 mol/L min = 8.0 x 10⁻⁴ mol/L min
- Instantaneous Rate of Reaction = Tangent line to Conc / Time curve, measure slope of the line Note Rate_{inst} for [N2O5] at time = 5.0 hrs = 0.0014492 = **1.4 x 10⁻³ mol/L min**

Since the plot does not show a straight line, the rate of reaction is not constant, the rate of reaction changes as the reaction progresses. In the beginning, Rate_{Decom} N2O2 is fast (8.0 x 10^{-3} mol / L min), later it slows (8.0 x 10^{-4} mol/L min).

For This Reaction:	$N2O2 \rightarrow 2 NO2 + \frac{1}{2}O2$
Rate of decomp of N2O5	= $\frac{1}{2}$ * Rate of formation of NO2 = 2 * Rate of formation of O2
- Δ[N2O5] / Δt	$= \frac{1}{2} \Delta [NO2] / \Delta t \qquad = 2 \Delta [O2] / \Delta t$
Rate of formation of NO2	= 2 * Rate of decomp of N2O5
Δ [NO2] / Δ t	$= 2 - \Delta [N_2O_5] / \Delta t$
Rate of formation of O2	= $1/2 *$ Rate of decomp of N2O5
Δ [O2] / Δ t	$= \frac{1}{2} - \Delta [N_2O_5] / \Delta t$

Example 15.1 4 PH_{3 (g)} \rightarrow P4 (g) + 6 H2 (g) Rate of decomp of PH₃ = 4 * the Rate of formation of P4 = 6/4 * the Rate of formation of H2 $-\Delta$ [PH₃] / Δ t = 4 * Δ [P4] / Δ t = 6/4 Δ [H2] / Δ t

15.2 Reaction Conditions and Rate

```
Effect of Concentration and Temperature<br/>Determine the amount of Vit C in a sample.(ROT increase temp 10^{\circ} C = doubles rate)<br/>H2O2 + Iodide, Ascorbic Acid, Starch
```

1. $H_2O_2 + 2I^2 + 2H_3O^+ \rightarrow 4H_2O_1 + I_2$ Slow Reaction, generates Iodine

Iodine, then reacts with the Vitamin C (Ascorbic Acid) [Fast Reaction] until all of the Vitamin C is used up. Then the excess I_2 reacts with the Starch to form a blue-black complex.

Experimental: 26-Jun-2012

Moles of Vit CTime for all Vit C to be used up (soln turns blue-black)X moles51 secondsLess than X moles1 min 33 secX moles, solution heated56 seconds

- 1. If the concentration of a reactant is increased, the reaction rate will often increase
- 2. If the temperature is raised, the reaction rate will increase (ROT 10°C increase will double the reaction rate)

Catalyst are substances that accelerate a reaction but are not consumed. **Surface area** also affects reaction rate, the smaller the particles, the larger the surface area, the faster the reaction rate.

 $2 \text{ H}_2\text{O}_2 \rightarrow \text{O}_2 \uparrow + 2 \text{ H}_2\text{O}$ Reaction is very slow (a bottle of Hydrogen Peroxide can sit on your

shelf for a year), but add a pinch of MnO2 and the reaction is very fast.

15.3 Effect of Concentration on Reaction Rate

Refer to previous data above, Rate Equations

N2O2 \rightarrow 2NO2 + $\frac{1}{2}$ O2

At [N2O2] = 0.34 mol/L, Rate_{inst} = 0.0014 mol/L min At [N2O2] = 0.68 mol/L, Rate_{inst} = 0.0028 mol/L min Doubling the concentration doubles the reaction rate So Rate of Reaction \propto [N2O2]

Rate Equations:

Rate of Reaction = $-\Delta$ (N2O2)/ Δ t = + (1/2) Δ (NO2)/ Δ t = 2 Δ (O2)/ Δ t = **k**[N2O5]

General form of Rate Equation: $aA + bB \rightarrow xX$

Rate of Reaction = k [A]^m [B]ⁿ k, m, n are determined by experiment!

Order of a Reaction

Order Overall Reaction Order = particular reactant is the **exponent** of a components concentration= sum of all exponents of concentration

Experimental Determination of Rate Constant:

 $2 \text{ NO} + \text{Cl}_2 \rightarrow 2 \text{ NOCl}$

	Expe	rimen	ıt	[NO]] mol/I	L [Cl2]	mol/L	Rate mol/L s
		1		0.250	0	0.250		1.43 x 10 ⁻⁶
		2		0.500	C	0.250		5.72 X 10 ⁻⁶
		3		0.250)	0.500		2.86 x 10 ⁻⁶
		4		0.500	C	0.500		11.4 x 10 ⁻⁶
Com	pare:							
	1 - 2	[Cl2]	is con	stant	[NO] i	is doubled	Rate increase	es by 4
	1 - 3	[Cl2]	is dou	bled	[NO] i	is constant	Rate doubles	
_	1 - 4	[Cl2]	is dou	bled	[NO] i	is doubled	Rate = 2 * 4 =	= 8
	Rate	1/2	1	2	4	Change of ra	te between tw	o measurements
	М	-1	0	1	2	Exponent of	concentration	

Reaction Rate Constant = $K = [NO]^m * [Cl_2]^n = [NO]^2 * [Cl_2]^1$

If you double the concentration of one component and the reaction rate doubles, then K is directly proportional to [x] or $[x]^1$. See 1-3 above.

Units for Rate Constant, k	First Order	k = 1/time
	Second Order	k = L/mol time
	Zero Order	k = mol / L time
26-Jun-2012	Page 4 of 12	Chapter 15

Determining Rate Equation	on CH3COOCH	[3 + OH- →	• CH ₃ CO ₂ - +	СН3ОН				
Experiment	[CH3COOCH3] mol/L = M	[OH-] mol/L	Iniitial Rate mol/L s at 25	50C				
1 2 3	0.050 0.050 0.10	0.050 0.10 0.10	0.0034 0.0069 0.0137	Rate Doubles Rate Doubles				
See Rate/M chart above, $2 \rightarrow 3$ Conc doubles, rate is 2 x, exponent is 1[CH3COOCH3] $1 \rightarrow 2$ Cond doubles, rate is 2 x, exponent is 1[OH-]1								
Reaction Rate = $k * [CH_3COOCH_3]^1 * [OH_3]^1$								
k = Reaction Rate / $[CH_3COOCH_3]^1 * [OH-]^1$								
= 0.0034 mol/Ls / (0.050 mol/L * 0.050 mol/L) = 1.36 L/mol s = 0.0069 mol/Ls / (0.050 mol/L * 0.10 mol/L) = 1.38 L/mol s = 0.0137 mol/Ls / (0.10 mol/L * 0.10 mol/L) = 1.37 L/mol s								

Note: Overall reaction is 2nd order. k units are second order units

SEE SLIDE

EXAMPLE: The reaction,
 $2 \text{ NO } (g) + 2 \text{ H}_2(g) \rightarrow \text{ N}_2(g) + 2 \text{ H}_2\text{O}(g)$ is experimentally found to be *first order* in H2 and *third order* in NOa) Write the rate law.
Rate(Ms⁻¹) = k [H2] [NO] 3 b) What is the overall order of the reaction?
Overall order = 1 + 3 = 4 *"4th order"*c) What are the units of the rate constant?Rate = $\frac{M}{s}$ = k × M × M3 = k × M4 $k = \frac{M}{s × M4} = \frac{M^{-3}s^{-1}}{s^{-1}}$

Rate = $k [A]^x [B]^y$ If the rate doubles when [A] doubles and [B] stays the same the order is 1

Determining Reaction Order: The Method of Initial Rates								
The reaction of nitric oxide with hydrogen at 1280 °C is as follows:								
	2NO (<i>g</i>	$) + 2H_2(g)$	$\rightarrow N_2(g)$	+ 2H ₂ O (g)				
From t rate la	From the following experimental data, determine the rate law and rate constant.							
	Trial	[NO] _o (M)	[H ₂] _ο (Μ)	Initial Rate (Mmin ⁻¹)				
	1	0.0100	0.0100	0.00600				
	2	0.0200	0.0300	0.144				
	3	0.0100	0.0200	0.0120				

Trial 1 to Trial 3, [NO] is constant, $[H_2]$ is doubled, rate is doubled, rate is \propto to $[H_2]^1$

There are other examples in your book, go over them!

15.4 Concentration-Time Relationships

Table 15.1	Characteristic Properties of Reactions of the	Туре	"R	→ Products"
------------	--	------	----	-------------

Order	Rate Equation	Integrated Rate Equation	Straight-Line Plot	Slope	k Units
0	$-\Delta[R]/\Delta t = k[R]^0$	$[R]_0 - [R]_t = kt$	[R] _t vs. t	-k	mol/L · time
1	$-\Delta[R]/\Delta t = k[R]^1$	$\ln\left([R]_t/[R]_0\right) = -kt$	ln [R] _t vs. t	-k	1/time
2	$-\Delta[R]/\Delta t = k[R]^2$	$(1/[R]_t) - (1/[R]_0) = kt$	1/[R] _t vs. t	k	L/mol · time

<u>1. First Order Reactions</u> $\ln([R]_t)/([R]_o) = -kt$

k units = 1 / time

Reaction Rate = k is directly proportional to $[R]^1$ R = conc at time t and zero R_t/R_o = fraction of reactant that remains = < 1 Note: k is independent of concentration – use any units of concentration

How long will it take for 0.050 mol/L to drop to 0.010 mol/L? ln ($[R]_t$) / ($[R]_0$) = - kt solve for t Ln ([0.010 M] / [0.050 M]) = - (2.42 h⁻¹) t t = - ln (0.20) / 2.42 h⁻¹ = 0.665 h = 0.67 h (rounded to 2 SD).

<u>2. Second Order Reactions</u> $1/[R]_t - 1/[R]_o = kt$ k units = L / mol time

 Example 15.7
 HI (g) $\rightarrow \frac{1}{2} H_{2 (g)} + \frac{1}{2} I_{2 (g)}$ is 2nd order, k = 30. L/mol min at 443 °C How long will it take [HI] to drop from 0.010 M to 0.0050 M?

 $1 / [R]_t - 1 / [R]_o = kt$ solve for t

 (1 / 0.0050 mol/L) - (1 / 0.010 mol/L) = 30. L/Mol min * t

 t = 3.3 min

3. Zero Order Reactions $[\mathbf{R}]_{\mathbf{0}} - [\mathbf{R}]_{\mathbf{t}} = \mathbf{kt}$ k units = mol / L sec

Graphic Methods to determine Reaction Order and Rate Constant (See 15.1 above):

Plot data as a straight line	Y	=	mX	+	В
Zero Order	[R] _t	=	-kt	+	[R] ₀
First Order	ln [R] _t	=	-kt	+	ln [R] _o
Second Order	$1 / [R]_{t}$	=	+kt	+	1 [R] ₀

See plot 15.6 of ln [CH3N2CH3] is a straight line = **First Order**

Half Life / First Order Reactions, Half life = $t_{1/2}$ is used when dealing with 1st order reactions

 $t_{1/2} = 0.693 / k$ ***** Note $t_{1/2}$ is independent of concentration

Azomethane above has $k = 3.6 \times 10^{-4} / s$ What is it's half life?

 $t_{1/2} = 0.693 / k = 0.693 / 3.6 \times 10^{-4} / s = 1.9 \times 10^{3} s = 32. min$

Example 15.9, p 688 Radon-222 gas (²²²Rn) $t_{1/2}$ = 3.8 days.

How much will remain after 30 days starting with 4.0 x 10¹³ atoms $k = 0.693 / t_{1/2} = 0.693 / 3.8 \text{ days} = 0.18 / \text{ day}$

From the Integrated Rate Equation:

Ln ($[R]_t / [R]_o$) = -kt = ln ($[R]_t / 4.0 \times 10^{13}$ atoms) = - (0.18 / day) * 30 day = -5.5

 $[R]_t / 4.0 \times 10^{13} \text{ atoms} = e^{-5.5} = 0.0042$

 $[R]_t = 4.0 \times 10^{13} \text{ atoms } * 0.0042 = 1.68 \times 10^{11} \text{ atoms } = 1.7 \times 10^{11} \text{ atoms}$

15.5 Microscopic View of Reaction Rates, Collision theory of reaction rates:

- 1. Concentration and Reaction Rates
 - Reacting molecules must collide with one another
 - Double the concentration of one reactant, you will double the number of collisions
- 2. Temperature and Reaction Rates
 - Reacting molecules must collide with sufficient energy to initiate a reaction
 - Increase temp, the reaction occurs more rapidly. It increases the average energy of the molecules
 - Lower the temp will slow down the reaction
 - Remember ROT increase the temp of a reaction by 10 °C and you will double the reaction rate!
 - Increase temp increases the reaction rate by increasing the fraction of molecules with enough activation energy.
- 3. Activation Energy= E_a
 - Molecules require a minimum amount of energy to react

Throw volleyball over a net, need to give it sufficient energy to go over the net

Transition State – the number of molecules reaches a maximum energy, as such it cannot be isolated. At the Transition State, the reaction can go either way forward or reverse.

NO2 + CO - NO + CO2

Peak is Transition State, reaction is Exothermic

4. Molecules must collide in an orientation that can lead to a reaction, Reactant molecules must come together in correct orientation

1 molecule collides, than comes apart	– can happen
2 molecules collide	– can happen
3 molecules must collide	– rare for 3 things to collide at once

Arrhenius Equation

Rate Constant = $k = Ae^{-E/RT}$

R = 8.314510 x 10⁻³ kJ / K mol

A = frequency factor = # of collisions with correct geometry and is temp dependant

e $^{-E/RT}$ = fraction of molecules with minimum energy for reaction and is < 1

ln k	=	Ea/I	R (1/T)) +	ln A	Plot of a straight line!
у	=	m	Х	+	b	Note m = slope of the line

Slope = $-3.0 \times 10^4 \text{ K}$ = -Ea/REa = $-3.0 \times 10^4 \text{ K} * 8.31 \times 10^{-3} \text{ kJ/K} \text{ mol} = 2.493 \times 10^2 = 2.5 \times 10^2 \text{ kJ/mol}$ Ea is determined if we know k at two temperatures: $\ln \text{ k2/k1} = -\text{Ea/R} * [1/\text{T2} - 1/\text{T1}]$

STUDENTS: Re-solve the above reaction using 2 temperatures.

STUDENTS: Example 15.11, calculate Ea

Effects of Catalysts on Reaction Rate

Ea = large 264 kJ/mol because a Π bond is broken

But if you add I_2 it runs faster Ea = large 150 kJ/mol Rate = k [cis-2-butene] [I2]^{1/2} The Ea is lower because the mechanism is changed. Generates Reaction Intermediates

15.6 Reaction Mechanism, Chemical Reactions occur in steps

	Overall Reaction		on Br ₂ +	- 2 NO		\rightarrow	2 BrN	0	Overall R	eaction
	Step 1		Br_2 +	- NO		ŧ	Br ₂ NC)	Elementa	ry Step 1
	Step 2		Br_2N	$Br_2NO + NO$		\rightarrow	2 BrN	0	Elementa	ry Step 2
Molecularity		Unimo Bimole	lecular cular	03 03 +	0	\rightarrow \rightarrow	02 + 2 02	0	_	
		Overall	Reaction	2 03		\rightarrow	3 02		-	
Rate Equation	n for E	lementa	ry Steps							
$\hat{A} \rightarrow Produce$		Product		Unim	olecula	ar	Rate =	: k [A]		
A + B	5	\rightarrow 1	Product	Bimo		ecular		Rate =	• k [A][B]	
A + A		\rightarrow 1	Product	Bimo		ecular		Rate =	• k [A][A]	
2A +	В	\rightarrow 1	Product	Term		olecula	r	Rate =	$k [A]^2 [B]$]

Reaction Mechanisms and Rate Equations

Rate Determining Step – products of a reaction can never be produced at a rate faster then the rate of the slowest step

A + B	\rightarrow	X + M	Step 1 SLOW	Rate = k [A][B]
M + A	\rightarrow	Y	Step 2 FAST	
2A + B	\rightarrow	X + Y	Overall Reaction	
2 NO2 + F2	\rightarrow	2 FNO2	Overall Reaction	
NO2 + F2	\rightarrow	FNO2 + F	SLOW	Rate = k [NO2][F2]
NO2 + F	\rightarrow	FNO2	FAST	

EXAMPLE 15.13 Students need to understand this principle

Enzymes are Nature's Catalyst and increase reaction rates 10⁷ to 10¹⁴ times

Reaction Mechanism with Equilibrium

A fast initial step gives and intermediate, then a slower step to produce product.

2 NO + 0	\rightarrow	2 NO2	Overall Reaction
NO + O	₽	OONO	Intermediate FAST EQUILIBRIUM
NO + OONO	\rightarrow	2 NO2	SLOW – Rate Determining Step
So rate = k_2 [NO] [OONO]			