## Chemical Kinetics


#### Abstract

These Notes are to SUPPLIMENT the Text, They do NOT Replace reading the Text Book Material. Additional material that is in the Text Book will be on your tests! To get the most information, READ THE CHAPTER prior to the Lecture, bring in these lecture notes and make comments on these notes. These notes alone are NOT enough to pass any test!


Note: For my lectures and class (aq) for aqueous is assumed.
Note: The reactions in this chapter go to completion, Ch 16 are reactions at equilibrium
Phenolphthalein is an indicator used in the titration of acid and a base.
$\mathrm{pH}<8=$ colorless (neutral to acidic), $\mathrm{pH}>12$ ( basic ) color is pink


Chemical Kinetics is the study of Rates of Chemical Reactions
Reaction Mechanism is the detailed pathway taken by atoms and molecules as a reaction proceeds.
15.1 Rates of Reaction $=$ Change in Concentration / Change in Time $=\Delta$ [concentration] $/ \Delta$ time
$\mathbf{N 2 O 2} \rightarrow 2 \mathbf{N O 2}+1 / 202$


You will notice for this reaction, the rate of reaction changes with time

1. Initial Rate is the rate at $\operatorname{Time}=0$, (hard to measure), use a Tangent
2. Average Rate of Reaction - measure 2 quantities (conc \& time), Rate ${ }_{\text {avg }}=\Delta$ Conc $/ \Delta$ Time

Rate of loss of $\mathrm{N}_{2} \mathrm{O}_{5}=-\Delta\left[\mathrm{N}_{2} \mathrm{O}_{5}\right] / \Delta \mathrm{t}$
Rate ${ }_{\text {avg }}$ of loss of N2O5 for time 45 min to $60 \mathrm{~min}=-(1.10-1.22) \mathrm{mol} / \mathrm{L} /(55-40) \mathrm{min}=$ $0.0080 \mathrm{~mol} / \mathrm{L} \min =8.0 \times 10^{-3} \mathrm{~mol} / \mathrm{L} \mathbf{~ m i n}$

Rate ${ }_{\text {avg }}$ of loss of N 2 O 5 for time 6.5 to 9.0 hrs $=-(0.10-0.22) \mathrm{mol} / \mathrm{L} /(540-390) \mathrm{min}=$ $0.00080 \mathrm{~mol} / \mathrm{L} \min =8.0 \times 10^{-4} \mathrm{~mol} / \mathrm{L} \mathbf{~ m i n}$

Instantaneous Rate of Reaction = Tangent line to Conc / Time curve, measure slope of the line Note Rate ${ }_{\text {inst }}$ for $\left[\mathrm{N}_{2} \mathrm{O} 5\right]$ at time $=5.0 \mathrm{hrs}=0.0014492=\mathbf{1 . 4} \times 10^{-3} \mathbf{~ m o l} / \mathrm{L} \mathbf{~ m i n}$

Since the plot does not show a straight line, the rate of reaction is not constant, the rate of reaction changes as the reaction progresses. In the beginning, Rate ${ }_{\text {Decom }} \mathrm{N} 2 \mathrm{O} 2$ is fast ( $8.0 \times 10^{-3} \mathrm{~mol} /$ $\mathrm{L} \min$ ) , later it slows ( $8.0 \times 10^{-4} \mathrm{~mol} / \mathrm{L} \mathrm{min}$ ).

For This Reaction: $\quad \mathbf{N 2 O 2} \rightarrow 2 \mathbf{N O 2}+1 / 2 \mathbf{O 2}$
Rate of decomp of $\mathrm{N} 2 \mathrm{O} 5=1 / 2$ * Rate of formation of $\mathrm{NO} 2=2$ * Rate of formation of O 2
$-\Delta\left[\mathrm{N}_{2} \mathrm{O}_{5}\right] / \Delta \mathrm{t}=1 / 2 \Delta[\mathrm{NO} 2] / \Delta \mathrm{t}=2 \Delta[\mathrm{O} 2] / \Delta \mathrm{t}$
Rate of formation of NO2 $=2 *$ Rate of decomp of N2O5
$\Delta[\mathrm{NO} 2] / \Delta \mathrm{t}=2-\Delta\left[\mathrm{N}_{2} \mathrm{O}_{5}\right] / \Delta \mathrm{t}$
Rate of formation of $\mathrm{O} 2=1 / 2 *$ Rate of decomp of $\mathrm{N}_{2} \mathrm{O}_{5}$
$\Delta\left[\mathrm{O}_{2}\right] / \Delta \mathrm{t}=1 / 2-\Delta\left[\mathrm{N}_{2} \mathrm{O} 5\right] / \Delta \mathrm{t}$
Example 15.1 $\quad 4 \mathrm{PH} 3(\mathrm{~g}) \rightarrow \mathrm{P} 4(\mathrm{~g})+6 \mathrm{H} 2(\mathrm{~g})$
Rate of decomp of $\mathrm{PH} 3=4^{*}$ the Rate of formation of $\mathrm{P}_{4}=6 / 4 *$ the Rate of formation of H 2
$-\Delta[\mathrm{PH} 3] / \Delta \mathrm{t}=4^{*} \Delta[\mathrm{P} 4] / \Delta \mathrm{t}=6 / 4 \Delta[\mathrm{H} 2] / \Delta \mathrm{t}$

### 15.2 Reaction Conditions and Rate

Effect of Concentration and Temperature (ROT increase temp $10^{\circ} \mathrm{C}=$ doubles rate)
Determine the amount of Vit C in a sample. H 2 O 2 + Iodide, Ascorbic Acid, Starch

1. $\mathrm{H}_{2} \mathrm{O}_{2}+2 \mathrm{I}^{-}+2 \mathrm{H}_{3} \mathrm{O}^{+} \rightarrow 4 \mathrm{H}_{2} \mathrm{Ol}_{1}+\mathrm{I}_{2} \quad$ Slow Reaction, generates Iodine

Iodine, then reacts with the Vitamin C (Ascorbic Acid) [Fast Reaction] until all of the Vitamin C is used up. Then the excess $I_{2}$ reacts with the Starch to form a blue-black complex.
$2 \mathrm{H}_{2} \mathrm{O}+\mathrm{I}_{2}+\mathrm{C}_{6} \mathrm{H}_{8} \mathrm{O}_{6} \rightarrow \mathrm{C}_{6} \mathrm{H}_{6} \mathrm{O}_{6}+2 \mathrm{H}_{3} \mathrm{O}^{+}+2 \mathrm{I}^{-} \quad$ Fast Reaction $\mathrm{I}_{2}{ }^{-}+$Starch $\rightarrow$ Blue Black Complex


## Experimental:

26-Jun-2012
Page 2 of 12
Chapter 15

Moles of Vit C
X moles
Less than X moles
X moles, solution heated

Time for all Vit C to be used up (soln turns blue-black) 51 seconds
1 min 33 sec
56 seconds

1. If the concentration of a reactant is increased, the reaction rate will often increase
2. If the temperature is raised, the reaction rate will increase (ROT $-10^{\circ} \mathrm{C}$ increase will double the reaction rate)

Catalyst are substances that accelerate a reaction but are not consumed.
Surface area also affects reaction rate, the smaller the particles, the larger the surface area, the faster the reaction rate.
$2 \mathrm{H} 2 \mathrm{O} 2 \rightarrow \mathrm{O} 2 \uparrow+2 \mathrm{H} 2 \mathrm{O} \quad$ Reaction is very slow (a bottle of Hydrogen Peroxide can sit on your shelf for a year), but add a pinch of MnO 2 and the reaction is very fast.


### 15.3 Effect of Concentration on Reaction Rate



Refer to previous data above, Rate Equations $\quad \mathrm{N} 2 \mathrm{O} 2 \rightarrow 2 \mathrm{NO} 2+1 / 2 \mathrm{O} 2$
At [N2O2] $=0.34 \mathrm{~mol} / \mathrm{L}$, Rateinst $=0.0014 \mathrm{~mol} / \mathrm{L} \mathrm{min}$
At [N2O2] $=0.68 \mathrm{~mol} / \mathrm{L}$, Rate $_{\text {inst }}=0.0028 \mathrm{~mol} / \mathrm{L} \mathrm{min}$
Doubling the concentration doubles the reaction rate
So Rate of Reaction $\propto$ [N2O2]

## Rate Equations:

Rate of Reaction $=-\Delta(\mathrm{N} 2 \mathrm{O} 2) / \Delta t=+(1 / 2) \Delta(\mathrm{NO} 2) / \Delta t=2 \Delta(\mathrm{O} 2) / \Delta t=k\left[\mathrm{~N}_{2} \mathrm{O}\right.$ ]

General form of Rate Equation: $\mathrm{aA}+\mathrm{bB} \rightarrow \mathrm{xX} \quad$ Rate of Reaction $=\mathrm{k}[\mathrm{A}]^{\mathrm{m}}[\mathrm{B}]^{\mathrm{n}}$
$\mathbf{k}, \mathbf{m}, \mathbf{n}$ are determined by experiment!

## Order of a Reaction

Order
Overall Reaction Order
= particular reactant is the exponent of a components concentration $=$ sum of all exponents of concentration
Slide

| A reaction order can be zero, or positive <br> integer and fractional number. |  |  |
| :---: | :--- | :--- |
| Order | Name | Rate Law |
| 0 | zeroth | rate $=k[A]^{0}=k$ |
| 1 | first | rate $=k[A]$ |
| 2 | second | rate $=k[A]^{2}$ |
| 0.5 | one-half | rate $=k[A]^{1 / 2}$ |
| 1.5 | three-half | rate $=k[A]^{3 / 2}$ |
| 0.667 | two-thirds | rate $=k[A]^{2 / 3}$ |



Experimental Determination of Rate Constant: $\quad 2 \mathrm{NO}+\mathrm{Cl} 2 \rightarrow 2 \mathrm{NOCl}$
Experiment [NO] mol/L [Cl2] mol/L Rate mol/L s
0.250
0.500
0.250
0.250
$1.43 \times 10^{-6}$
$5.72 \times 10^{-6}$
0.250
0.500
$2.86 \times 10^{-6}$
$11.4 \times 10^{-6}$
Compare:
1-2 [Cl2] is constant
$1-3 \quad[\mathrm{Cl} 2]$ is doubled
[NO] is doubled
1-4 [Cl2] is doubled
[NO] is constant
Rate increases by 4
Rate doubles
[NO] is doubled Rate $=2 * 4=8$

| Rate | $1 / 2$ | 1 | 2 | 4 | Change of rate between two measurements |
| :--- | :--- | :--- | :--- | :--- | :--- |
| M | -1 | O | 1 | 2 | Exponent of concentration |

Reaction Rate Constant $=\mathrm{K}=[\mathrm{NO}]^{\mathrm{m}}{ }^{*}[\mathrm{Cl} 2]^{\mathrm{n}}=[\mathrm{NO}]^{2} *[\mathrm{Cl} 2]^{1}$
If you double the concentration of one component and the reaction rate doubles, then K is directly proportional to $[\mathrm{x}]$ or $[\mathrm{x}]^{1}$. See 1-3 above.
Units for Rate Constant, $k$

First Order Second Order
Zero Order
Page 4 of 12
$\mathrm{k}=1 /$ time
$\mathrm{k}=\mathrm{L} / \mathrm{mol}$ time
$\mathrm{k}=\mathrm{mol} / \mathrm{L}$ time
Chapter 15

Determining Rate Equation $\quad \mathrm{CH}_{3} \mathrm{COOCH}_{3}+\mathrm{OH}^{-} \rightarrow \mathrm{CH}_{3} \mathrm{CO}_{2}{ }^{-}+\mathrm{CH} 3 \mathrm{OH}$

Experiment

1
2
3
[ $\mathrm{CH}_{3} \mathrm{COOCH}_{3}$ ] $\mathrm{mol} / \mathrm{L}=\mathrm{M}$
[ $\mathrm{OH}^{-}$]
$\mathrm{mol} / \mathrm{L}$
0.050
0.10
0.10

Iniitial Rate $\mathrm{mol} / \mathrm{L} \mathrm{s}$ at 250 C
0.0034
0.0069 Rate Doubles
0.0137 Rate Doubles

See Rate/M chart above,
$2 \rightarrow 3 \quad$ Conc doubles, rate is 2 x , exponent is 1
$\left[\mathrm{CH}_{3} \mathrm{COOCH}_{3}\right]^{1}$
$1 \rightarrow 2 \quad$ Cond doubles, rate is 2 x , exponent is 1
Reaction Rate $=\mathrm{k}^{*}\left[\mathrm{CH}_{3} \mathrm{COOCH}_{3}\right]^{\mathbf{1}}{ }^{*}\left[\mathrm{OH}^{-}\right]^{\mathbf{1}}$
$\mathrm{k}=$ Reaction Rate $/\left[\mathrm{CH}_{3} \mathrm{COOCH}_{3}\right]^{\mathbf{1}}{ }^{*}\left[\mathrm{OH}^{-}\right]^{\mathbf{1}}$

$$
\begin{array}{ll}
=0.0034 \mathrm{~mol} / \mathrm{Ls} /\left(0.050 \mathrm{~mol} / \mathrm{L}^{*} 0.050 \mathrm{~mol} / \mathrm{L}\right) & =1.36 \mathrm{~L} / \mathrm{mol} \mathrm{~s} \\
=0.0069 \mathrm{~mol} / \mathrm{Ls} /\left(0.050 \mathrm{~mol} / \mathrm{L}^{*} 0.10 \mathrm{~mol} / \mathrm{L}\right) & =1.38 \mathrm{~L} / \mathrm{mol} \mathrm{~s} \\
=0.0137 \mathrm{~mol} / \mathrm{Ls} /\left(0.10 \mathrm{~mol} / \mathrm{L}^{*} 0.10 \mathrm{~mol} / \mathrm{L}\right) & \\
=1.37 \mathrm{~L} / \mathrm{mol} \mathrm{~s}
\end{array}
$$

Note: Overall reaction is $2^{\text {nd }}$ order. k units are second order units

## SEE SLIDE

EXAMPLE: The reaction,

$$
2 \mathrm{NO}(\mathrm{~g})+2 \mathrm{H}_{2}(\mathrm{~g}) \rightarrow \mathrm{N}_{2}(\mathrm{~g})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{~g})
$$

is experimentally found to be first order in $\mathrm{H}_{2}$ and third order in NO
a) Write the rate law.

$$
\operatorname{Rate}\left(\mathrm{Ms}^{-1}\right)=\mathrm{k}\left[\mathrm{H}_{2}\right][\mathrm{NO}]^{3}
$$

b) What is the overall order of the reaction?

$$
\text { Overall order }=1+3=4 \quad \text { "4th order" }
$$

c) What are the units of the rate constant?

$$
\text { Rate }=\frac{M}{s}=k \times M \times M^{3}=k \times M^{4} \quad k=\frac{M}{s \times M^{4}}=\underline{M^{-3} s^{-1}}
$$

Rate $=k\left[A^{x x}[B] \quad\right.$ If the rate doubles when [A] doubles and [B] stays the same the order is 1

## Determining Reaction Order: The Method of Initial Rates

The reaction of nitric oxide with hydrogen at $1280^{\circ} \mathrm{C}$ is as follows:

$$
2 \mathrm{NO}(g)+2 \mathrm{H}_{2}(g) \rightarrow \mathrm{N}_{2}(g)+2 \mathrm{H}_{2} \mathrm{O}(g)
$$

From the following experimental data, determine the rate law and rate constant.

| Trial | $\left[\mathrm{NO}_{\circ}(\mathrm{M})\right.$ | $\left[\mathrm{H}_{2}\right]_{\circ}(\mathrm{M})$ | Initial Rate <br> $\left(\mathrm{Mmin}^{-1}\right)$ |
| :---: | :---: | :---: | :---: |
| 1 | 0.0100 | 0.0100 | 0.00600 |
| 2 | 0.0200 | 0.0300 | 0.144 |
| 3 | 0.0100 | 0.0200 | 0.0120 |

Trial 1 to Trial 3, [NO] is constant, [ $\mathrm{H}_{2}$ ] is doubled, rate is doubled, rate is $\boldsymbol{\propto}$ to $\left[\mathrm{H}_{2}\right]^{1}$

## Determining Reaction Order: The Method of Initial Rates

Similarly for $\boldsymbol{x}: \operatorname{Rate}(\mathrm{M} / \mathrm{min})=\mathrm{k}[\mathrm{NO}]^{x}\left[\mathrm{H}_{2}\right]^{y}$

$$
\begin{gathered}
\frac{\operatorname{Rate}(2)}{\operatorname{Rate}(1)}=\frac{k[\mathrm{NO}]_{(2)}^{x}\left[\mathrm{H}_{2}\right]_{(1)}^{y}}{k[\mathrm{NO}]_{(1)}^{x}\left[\mathrm{H}_{2}\right]_{(2)}^{y}} \\
\frac{0.144}{0.00600}=\frac{\mathrm{k}[0.0200]^{x}[0.0300]}{k\{0.0100]^{x}[0.0100]} \\
24=(2)^{x} \times(3) \\
(2)^{x}=8 \\
x \log (2)=\log (8) \quad x=3
\end{gathered}
$$

There are other examples in your book, go over them!

Table 15.1 Characteristic Properties of Reactions of the Type "R $\longrightarrow$ Products"

| Order | Rate Equation | Integrated Rate Equation | Straight-Line Plot | Slope | $k$ Units |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 0 | $-\Delta[\mathrm{R}] / \Delta t=k[\mathrm{R}]^{0}$ | $[\mathrm{R}]_{0}-[\mathrm{R}]_{\mathrm{t}}=k t$ | $[\mathrm{R}]_{\mathrm{t}}$ vs. $t$ | -k | mol/L - time |
| 1 | $-\Delta[\mathrm{R}] / \Delta t=k[\mathrm{R}]^{1}$ | $\ln \left([R]_{t} /[R]_{0}\right)=-k t$ | $\ln [R]_{t}$ vs. $t$ | -k | 1/time |
| 2 | $-\Delta[\mathrm{R}] / \Delta t=k[\mathrm{R}]^{2}$ | $\left(1 /[R]_{t}\right)-\left(1 /[R]_{0}\right)=k t$ | $1 /[\mathrm{R}]_{t}$ vs. $t$ | $k$ | L/mol - time |

## 1. First Order Reactions $\quad \ln \left([R]_{\mathbf{t}}\right) /\left([R]_{\mathbf{o}}\right)=-\mathbf{k t} \quad \mathrm{k}$ units $=1 /$ time

Reaction Rate $=k$ is directly proportional to $[R]^{1}$
$\mathrm{R}=$ conc at time t and zero $\quad \mathrm{R}_{\mathrm{t}} / \mathrm{R}_{\mathrm{o}}=$ fraction of reactant that remains $=<1$
Note: $k$ is independent of concentration - use any units of concentration
Example 15.5
Cyclopropane $\rightarrow$ Propene at $500^{\circ} \mathrm{C} \quad \mathrm{k}=2.42 \mathrm{~h}^{-1}$

$\longrightarrow \mathrm{CH}_{3} \mathrm{CH}=\mathrm{CH}_{2}$

How long will it take for $0.050 \mathrm{~mol} / \mathrm{L}$ to drop to $0.010 \mathrm{~mol} / \mathrm{L}$ ?
$\ln \left([R]_{\mathrm{t}}\right) /\left([\mathrm{R}]_{\mathrm{o}}\right)=-\mathrm{kt}$
solve for $t$
$\operatorname{Ln}([0.010 \mathrm{M}] /[0.050 \mathrm{M}])=-\left(2.42 \mathrm{~h}^{-1}\right) \mathrm{t}$
$\mathrm{t}=-\ln (0.20) / 2.42 \mathrm{~h}^{-1}=0.665 \mathrm{~h}=0.67 \mathrm{~h}$ (rounded to 2 SD ).
2. Second Order Reactions $\mathbf{1} /[\mathbf{R}]_{\mathbf{t}}-\mathbf{1} /[\mathbf{R}]_{\mathbf{o}}=\mathbf{k t} \quad \mathrm{k}$ units $=\mathrm{L} / \mathrm{mol}$ time

Example 15.7 $\quad \mathrm{HI}(\mathrm{g}) \rightarrow 1 / 2 \mathrm{H}_{2(\mathrm{~g})}+1 / 2 \mathrm{I}_{2(\mathrm{~g})} \quad$ is $2^{\text {nd }}$ order, $\mathrm{k}=30 . \mathrm{L} / \mathrm{mol} \mathrm{min}$ at $443{ }^{\circ} \mathrm{C}$ How long will it take [HI] to drop from 0.010 M to 0.0050 M ?
$1 /[R]_{\mathrm{t}}-1 /[\mathrm{R}]_{\mathrm{o}}=\mathrm{kt} \quad$ solve for t
$(1 / 0.0050 \mathrm{~mol} / \mathrm{L})-(1 / 0.010 \mathrm{~mol} / \mathrm{L})=30 . \mathrm{L} / \mathrm{Mol} \mathrm{min} * \mathrm{t}$
$\mathrm{t}=3.3 \mathrm{~min}$
3. Zero Order Reactions $\quad[\mathbf{R}]_{\mathbf{o}}-[\mathbf{R}]_{\mathbf{t}}=\mathbf{k t} \quad \mathrm{k}$ units $=\mathrm{mol} / \mathrm{L} \mathrm{sec}$

Graphic Methods to determine Reaction Order and Rate Constant (See 15.1 above):
Plot data as a straight line $\quad Y$
Zero Order
First Order
Second Order
$[\mathrm{R}]_{\mathrm{t}}$
$\ln [R]_{t}$
$1 /[\mathrm{R}]_{\mathrm{t}}=+\mathrm{kt}+\quad 1[\mathrm{R}]_{\mathrm{o}}$


See plot 15.6 of $\ln \left[\mathrm{CH}_{3} \mathrm{~N}_{2} \mathrm{CH}_{3}\right]$ is a straight line $=$ First Order
Half Life / First Order Reactions, Half life $=t_{1 / 2}$ is used when dealing with $1^{\text {st }}$ order reactions $\mathbf{t}_{\mathbf{1} \mathbf{2}}=\mathbf{0 . 6 9 3} / \mathbf{k} \quad{ }^{* * * * *}{\text { Note } t_{1 / 2}}$ is independent of concentration
Azomethane above has $\mathrm{k}=3.6 \times 10^{-4} / \mathrm{s} \quad$ What is it's half life?
$\mathrm{t}_{1 / 2}=0.693 / \mathrm{k}=0.693 / 3.6 \times 10^{-4} / \mathrm{s} \quad=1.9 \times 10^{3} \mathrm{~S}=32 . \mathrm{min}$
Example 15.9, p $688 \quad$ Radon-222 gas ( ${ }^{222} \mathrm{Rn}$ ) $\quad \mathrm{t}_{1 / 2}=3.8$ days.
How much will remain after 30 days starting with $4.0 \times 10^{13}$ atoms
$\mathrm{k}=0.693 / \mathrm{t}_{1 / 2}=0.693 / 3.8$ days $=0.18 /$ day
From the Integrated Rate Equation:
$\operatorname{Ln}\left([\mathbf{R}]_{\mathbf{t}} /[\mathbf{R}]_{\mathbf{o}}\right)=\mathbf{- k t}=\ln \left([R]_{\mathrm{t}} / 4.0 \times 10^{13}\right.$ atoms $)=-(0.18 / \text { day })^{*} 30$ day $=-5.5$
$[\mathrm{R}]_{\mathrm{t}} / 4.0 \times 10^{13}$ atoms $=\mathrm{e}^{-5.5}=0.0042$
$[\mathrm{R}]_{\mathrm{t}}=4.0 \times 10^{13}$ atoms ${ }^{*} 0.0042=1.68 \times 10^{11}$ atoms $=1.7 \times 10^{11}$ atoms

### 15.5 Microscopic View of Reaction Rates, Collision theory of reaction rates:

1. Concentration and Reaction Rates

- Reacting molecules must collide with one another
- Double the concentration of one reactant, you will double the number of collisions

2. Temperature and Reaction Rates

- Reacting molecules must collide with sufficient energy to initiate a reaction
- Increase temp, the reaction occurs more rapidly. It increases the average energy of the molecules
- Lower the temp will slow down the reaction
- Remember ROT - increase the temp of a reaction by $10^{\circ} \mathrm{C}$ and you will double the reaction rate!
- Increase temp increases the reaction rate by increasing the fraction of molecules with enough activation energy.

3. Activation Energy= $\mathrm{E}_{\mathrm{a}}$

- Molecules require a minimum amount of energy to react

Throw volleyball over a net, need to give it sufficient energy to go over the net


Transition State - the number of molecules reaches a maximum energy, as such it cannot be isolated. At the Transition State, the reaction can go either way forward or reverse.

$$
\mathrm{NO} 2+\mathrm{CO} \leftrightarrows \mathrm{NO}+\mathrm{CO} 2 \quad \text { Peak is Transition State, reaction is Exothermic }
$$


4. Molecules must collide in an orientation that can lead to a reaction, Reactant molecules must come together in correct orientation

1 molecule collides, than comes apart - can happen
2 molecules collide
3 molecules must collide

- can happen
- rare for 3 things to collide at once


## Arrhenius Equation Rate Constant $=\mathrm{k}=\mathrm{Ae}-\mathrm{E} / \mathrm{RT}$

$\mathrm{R}=8.314510 \times 10^{-3} \mathrm{~kJ} / \mathrm{K} \mathrm{mol}$
A = frequency factor = \# of collisions with correct geometry and is temp dependant
$\mathrm{e}^{-\mathrm{E} / \mathrm{RT}}=$ fraction of molecules with minimum energy for reaction and is $<1$
$\ln \mathrm{k}=\mathbf{E a} / \mathbf{R}(1 / \mathrm{T})+\ln \mathrm{A} \quad$ Plot of a straight line!
$\mathrm{y}=\mathbf{m} \mathrm{x}+\mathrm{b} \quad$ Note $\mathrm{m}=$ slope of the line

Example 15.10 $2 \mathrm{~N}_{2} \mathrm{O}_{(\mathrm{g})} \rightarrow 2 \mathrm{~N} 2(\mathrm{~g})+\mathrm{O} 2(\mathrm{~g})$


Slope $\quad=-3.0 \times 10^{4} \mathrm{~K}=-\mathbf{E a} / \mathbf{R}$
Ea $\quad=-3.0 \times 10^{4} \mathrm{~K} * 8.31 \times 10^{-3} \mathrm{~kJ} / \mathrm{K} \mathrm{mol}=2.493 \times 10^{2}=\mathbf{2 . 5} \times 1 \mathbf{o}^{\mathbf{2}} \mathbf{k J} / \mathbf{m o l}$
Ea is determined if we know $k$ at two temperatures: $\mathbf{l n} \mathbf{k 2} / \mathbf{k} \mathbf{1}=-\mathbf{E a} / \mathbf{R} *[\mathbf{1} / \mathbf{T} \mathbf{2} \mathbf{- 1} \mathbf{T} \mathbf{1}]$
STUDENTS: Re-solve the above reaction using 2 temperatures.
STUDENTS: Example 15.11, calculate Ea

## Effects of Catalysts on Reaction Rate

cis-2-butene $\rightarrow$ trans-2-butene with an $\mathrm{I}_{2}$ catalyst

$\mathrm{Ea}=$ large $264 \mathrm{~kJ} / \mathrm{mol}$ because a $\Pi$ bond is broken

But if you add $\mathrm{I}_{2}$ it runs faster $\mathrm{Ea}=$ large $150 \mathrm{~kJ} / \mathrm{mol}$ Rate $=\mathrm{k}$ [cis-2-butene] [I2] ${ }^{1 / 2}$ The Ea is lower because the mechanism is changed. Generates Reaction Intermediates

15.6 Reaction Mechanism, Chemical Reactions occur in steps

| Overall Reaction | $\mathrm{Br}_{2}+2 \mathrm{NO}$ | $\rightarrow$ | 2 BrNO | Overall Reaction |
| :--- | :--- | :--- | :--- | :--- |
| Step 1 | $\mathrm{Br}_{2}+\mathrm{NO}$ | $\leftrightarrows$ | $\mathrm{Br}_{2} \mathrm{NO}$ | Elementary Step 1 |
| Step 2 | $\mathrm{Br}_{2} \mathrm{NO}+\mathrm{NO}$ | $\rightarrow$ | 2 BrNO | Elementary Step 2 |

Molecularity

| Unimolecular | O 3 | $\rightarrow$ | $\mathrm{O} 2+\mathrm{O}$ |
| :--- | :--- | :--- | :--- |
| Bimolecular | $\mathrm{O} 3+\mathrm{O}$ | $\rightarrow$ | 2 O 2 |
| Overall Reaction | 2 O 3 | $\rightarrow$ | 3 O 2 |

Rate Equation for Elementary Steps

| A | $\rightarrow$ | Product | Unimolecular | Rate $=\mathrm{k}[\mathrm{A}]$ |
| :--- | :--- | :--- | :--- | :--- |
| $\mathrm{A}+\mathrm{B}$ | $\rightarrow$ | Product | Bimolecular | Rate $=\mathrm{k}[\mathrm{A}][\mathrm{B}]$ |
| $\mathrm{A}+\mathrm{A}$ | $\rightarrow$ | Product | Bimolecular | Rate $=\mathrm{k}[\mathrm{A}][\mathrm{A}]$ |
| $2 \mathrm{~A}+\mathrm{B}$ | $\rightarrow$ | Product | Termolecular | Rate $=\mathrm{k}[\mathrm{A}]^{2}[\mathrm{~B}]$ |

## Reaction Mechanisms and Rate Equations

Rate Determining Step - products of a reaction can never be produced at a rate faster then the rate of the slowest step
A +B
$\rightarrow \quad \mathrm{X}+\mathrm{M}$
$M+A$
$\rightarrow \quad \mathrm{Y}$
$2 A+B$
$\rightarrow \quad \mathrm{X}+\mathrm{Y}$
Step 1 SLOW Rate $=k[A][B]$
Step 2 FAST
Overall Reaction
$2 \mathrm{NO} 2+\mathrm{F} 2 \quad \rightarrow \quad 2 \mathrm{FNO} 2$
Overall Reaction
$\mathrm{NO} 2+\mathrm{F} 2 \quad \rightarrow \quad \mathrm{FNO} 2+\mathrm{F} \quad$ SLOW $\quad$ Rate $=\mathrm{k}[\mathrm{NO} 2][\mathrm{F} 2]$
$\mathrm{NO} 2+\mathrm{F} \quad \rightarrow \quad \mathrm{FNO} 2 \quad$ FAST

EXAMPLE 15.13 Students need to understand this principle
Enzymes are Nature's Catalyst and increase reaction rates $10^{7}$ to $10^{14}$ times

Reaction Mechanism with Equilibrium
A fast initial step gives and intermediate, then a slower step to produce product.
$2 \mathrm{NO}+\mathrm{O} \quad \rightarrow \quad 2 \mathrm{NO} 2 \quad$ Overall Reaction
$\mathrm{NO}+\mathrm{O} \quad \leftrightarrows \quad \mathrm{OONO} \quad$ Intermediate FAST EQUILIBRIUM
$\mathrm{NO}+\mathrm{OONO} \quad \rightarrow \quad 2 \mathrm{NO} 2 \quad$ SLOW - Rate Determining Step
So rate $=\mathrm{k}_{2}$ [NO] [OONO]

